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Abstract

In this paper a cell by cell anisotropic adaptive mesh technique is added to an existing staggered mesh Lagrange plus
remap finite element ALE code for the solution of the Euler equations. The quadrilateral finite elements may be subdivided
isotropically or anisotropically and a hierarchical data structure is employed. An efficient computational method is
proposed, which only solves on the finest level of resolution that exists for each part of the domain with disjoint or hanging
nodes being used at resolution transitions. The Lagrangian, equipotential mesh relaxation and advection (solution remap-
ping) steps are generalised so that they may be applied on the dynamic mesh. It is shown that for a radial Sod problem and
a two-dimensional Riemann problem the anisotropic adaptive mesh method runs over eight times faster.
Crown Copyright � 2007 Published by Elsevier Inc. All rights reserved.
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1. Introduction

Many physical features of interest, such as shocks and boundary layers, represent large physical variations
over small length scales. Mesh refinement and mesh movement focus the resolution where the physics requires
it, while requiring fewer elements. Lagrangian schemes allow the mesh to follow the movement of the material.
These schemes are often combined with a remap step to reduce mesh tangling. The grid is relaxed and then the
state variables are remapped or advected on to the new grid. Lagrangian plus remap schemes are a type of
Arbitrary Lagrangian Eulerian, ALE, method [11,5,6]. The total number of elements remains fixed so
that any increase in mesh resolution in one area will cause the mesh to become coarser in other areas of
the domain.
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An alternative approach to the problem of resolution is adaptive mesh refinement, AMR, which allows the
total number of elements in a problem to be increased by introducing local regions of finer meshing. These
techniques have traditionally been applied on Eulerian meshes. A hierarchical set of grids, representing differ-
ent refinement levels, is automatically created as further resolution is required [9,10,18]. An ALE adaptive
mesh refinement method has also been developed by Anderson et al. [2]. In this work refinement occurs in
rectangular blocks and solutions must be obtained on all levels. In contrast the approach discussed here con-
siders cell by cell refinement and we solve only on the finest resolution that exists for each part of the domain.
The solution is obtained on the dynamic mesh containing both coarse and fine elements, while retaining the
efficiency of a hierarchical array based data structure.

For many features of interest the large physical variations occur only in one dominant direction. Aniso-
tropic refinement achieves the required resolution in the direction of interest without requiring unnecessary
refinement in the other direction. Anisotropic refinement of quadrilaterals has been considered by van der
Vegt and van der Ven [21], Aftosmis [1], Keats and Lien [13], and Apel [3]. Kallinderis and Baron [12] use
a cell based connectivity array data structure similar to that used in this work and described in Section 3.
In all of these papers the meshes remain fixed and do not move with the flow in contrast to the Lagrangian
or ALE approach that is employed in this work.

The remainder of this paper is organised as follows. Section 2 gives an outline of the ALE method. Section
3 describes the cell by cell refinement strategy including isotropic and anisotropic refinement. Section 4 con-
siders the changes required to the equipotential mesh relaxation method so that it can be applied on the
dynamic mesh, which contains coarse, isotropic and anisotropic elements. In Section 5 the modifications to
the advection or solution remapping step for the unstructured dynamic mesh are detailed. Results for a piston
problem, a radial Sod problem and a two-dimensional Riemann problem are given in Section 6. It is shown
that the anisotropic refinement preserves the accuracy of the uniform fine calculation but runs eight times
faster. Finally, conclusions and areas for further work are highlighted in Section 7.

2. The original ALE scheme

This section summarises the main details of the staggered grid ALE method used here; [5] provides more
information.

The Euler equations in a Lagrangian reference frame are
Dq
Dt
¼ �qr � u; ð1Þ

q
Du

Dt
¼ �rp; ð2Þ

q
D�

Dt
¼ �pr � u; ð3Þ
where
D

Dt
¼ o

ot
þ u � r ð4Þ
is the Lagrangian derivative, q is the density, u is the velocity vector, p is the pressure and � is the specific inter-
nal energy. These equations represent respectively conservation of mass, momentum and energy. The system
of equations is closed by including the ideal gas equation of state
p ¼ ðc� 1Þq�: ð5Þ

Density, energy and pressure are defined as cell centred variables, while position and velocity are nodal vari-
ables. A predictor–corrector time discretisation is used for the implicit pressure dependence in the Euler equa-
tions. The energy equation and the equation of state are used to obtain a half step pressure prediction. This
predicted pressure is then used in the momentum equation to derive full step nodal velocities. All state vari-
ables are then recalculated during a full time step correction. The time step is limited by the CFL condition.
The $p term in the momentum equation and the $ Æ u term in the energy equation are evaluated using quad-
rilateral bilinear isoparametric finite elements.
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A two-dimensional generalisation of Christensen’s scalar monotonic artificial viscosity [5] is implemented
by averaging the edge viscosities
qedge ¼ cqqjDuj2ð1� U2Þ þ clqcsjDujð1� UÞ; ð6Þ
where cs is the element sound speed, cq and cl are the quadratic and linear Christensen artificial viscosity coef-
ficients usually taken to be 0.75 and 0.5 respectively. The limiter U is similar to a van Leer limiter [22,23]. The
artificial viscosity is treated as an additional pressure.

To reduce mesh tangling, without losing all of the Lagrangian nature of the mesh, the mesh can be relaxed.
The Winslow–Crowley equipotential mesh relaxation equations are used to calculate new nodal positions
[25,19]. A smooth mesh is obtained if the potential lines / and w satisfy Laplace’s equation in x and y coor-
dinates. The inverse equations are
a
4

o
2x

o/2
� b

o
2x

o/w
þ c

4

o
2x

ow2
¼ 0; ð7Þ

a
4

o
2y

o/2
� b

o
2y

o/w
þ c

4

o
2y

ow2
¼ 0; ð8Þ
where
a ¼ 4
ox
ow

� �2

þ oy
ow

� �2
 !

; ð9Þ

b ¼ 2
ox
o/

ox
ow
þ oy

o/
oy
ow

� �
; ð10Þ

c ¼ 4
ox
o/

� �2

þ oy
o/

� �2
 !

: ð11Þ
The derivatives can be discretised using central differences resulting in
x/;w ¼
1

2ða/;w þ c/;wÞ
½a/;wðx/þ1;w þ x/�1;wÞ þ c/;wðx/;wþ1 þ x/;w�1Þ

þ b/;wðx/þ1;w�1 � x/þ1;wþ1 þ x/�1;wþ1 � x/�1;w�1Þ�; ð12Þ

y/;w ¼
1

2ða/;w þ c/;wÞ
½a/;wðy/þ1;w þ y/�1;wÞ þ c/;wðy/;wþ1 þ y/;w�1Þ

þ b/;wðy/þ1;w�1 � y/þ1;wþ1 þ y/�1;wþ1 � y/�1;w�1Þ�; ð13Þ
where
a/;w ¼ ðx/;wþ1 � x/;w�1Þ2 þ ðy/;wþ1 � y/;w�1Þ
2
; ð14Þ

b/;w ¼
1

2
ððx/þ1;w � x/�1;wÞðx/;wþ1 � x/;w�1Þ þ ðy/þ1;w � y/�1;wÞðy/;wþ1 � y/;w�1ÞÞ; ð15Þ

c/;w ¼ ðx/þ1;w � x/�1;wÞ2 þ ðy/þ1;w � y/�1;wÞ
2
: ð16Þ
These formulae can then be applied iteratively to give new relaxed positions.
In the advection or remapping step the old solution, u�a , must be transferred to the new relaxed mesh

using a two-dimensional extension of van Leer’s approach [22]. The technique for each cell centred var-
iable is similar, the approach is outlined for density, for specific internal energy the volume terms are
replaced with mass terms. As the mesh moves from the Lagrangian mesh to the relaxed mesh each ele-
ment side sweeps out an overlap volume, for example DVai for side i of element a. These overlap volumes
are associated with fluxes through the element sides. The fluxes Duai are calculated using Benson’s volume
coordinate approach [7], where DVai is multiplied by the cell centred value u�a interpolated to the middle
of the overlap volume
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Dua1 ¼ DV a1 u�a � u0a;n V a1 þ V a2 þ
1

2
DV a1

� �� �
;

Dua2 ¼ DV a2 u�a þ u0a;g V a2 þ V a3 þ
1

2
DV a2

� �� �
;

Dua3 ¼ DV a3 u�a þ u0a;n V a3 þ V a4 þ
1

2
DV a3

� �� �
;

Dua4 ¼ DV a4 u�a � u0a;g V a4 þ V a1 þ
1

2
DV a4

� �� �
;

ð17Þ
where u0a;n and u0a;g are monotonic slopes in the g and n directions respectively derived in volume coordinates
and the Vaj are partial volumes associated with element a as shown in Fig. 1.

Benson [7] calculates a parabolic slope by fitting a parabola through elements a � 1, a, a + 1 with centres
xa�1, xa, xa+1 as illustrated in Fig. 1
oua

ox
¼ ðuaþ1 � uaÞDx2

a þ ðua � ua�1ÞDx2
aþ1

DxaDxaþ1ðDxa þ Dxaþ1Þ
; ð18Þ
where the volume between xa�1 and xa is D xa and between xa and xa+1 is D xa+1. These volumes are given by
Dxa ¼ V �a�12 þ V �a�13 þ V �a1 þ V �a4; ð19Þ
Dxaþ1 ¼ V �a2 þ V �a3 þ V �aþ11 þ V �aþ14; ð20Þ
where � denotes old mesh quantities.
A second order limited slope is obtained by requiring that the interpolated value at the edge of the element

is not above or below that of the neighbour. The limited slope is
u0a;g ¼
1

2
ðsgnðDuaÞ þ sgnðDuaþ1ÞÞmin

oua

ox

����
����; jDuaj; jDuaþ1j

� �
; ð21Þ
where the left and right limiting slopes are
Dua ¼
ua � ua�1

V �a1 þ V �a4

;

Duaþ1 ¼
uaþ1 � ua

V �a2 þ V �a3

:
ð22Þ
The new values on the relaxed mesh are then obtained from
uþa ¼
1

V þa
u�a V �a þ Dub3 þ Dut1 þ Dul2 þ Dur4 �

X4

i¼1

Duai

 !
; ð23Þ
where b, t, l, r represent the bottom, top, left and right neighbouring elements of a.
Momentum advection on the staggered grid is performed by constructing a dual mesh [5,8]. Nodal masses

are calculated from the surrounding element masses
Fig. 1. Diagram of the three elements used to calculate the slopes and their partial volumes.
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Fig. 2. Variables for nodal mass flux calculation.
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Mn ¼
X4

i¼1

1

4
Mei : ð24Þ
The nodal mass flux through a dual cell side s is calculated as the sum of the nodal mass fluxes through the two
dual lines that make up the dual cell side
dmns ¼ dmnsk1
þ dmnsk2

; ð25Þ

where k1 and k2 denote the quadrant that the dual line is in. The nodal mass flux through a dual line is cal-
culated as the average of the two surrounding element mass fluxes dmeis over only half the length, for example
referring to Fig. 2 we have
dmn44 ¼
1

2

dme34 þ dme44ð Þ
2

;

dmn41 ¼
1

2

dme24 þ dme14ð Þ
2

;

ð26Þ
so that using Eq. (25) we have that the nodal flux through dual cell side 4 is
dmn4 ¼ dmn44 þ dmn41 ¼
1

4
ðdme34 þ dme44 þ dme24 þ dme14Þ: ð27Þ
Velocity slopes can be calculated on the dual mesh and then the new velocity values are evaluated in an
analogous way to the cell centred values.

We now extend the ALE method by considering local refinement of the mesh.

3. Isotropic and anisotropic refinement

The main subject of this paper is the inclusion of a cell by cell refinement technique into the ALE scheme.
The cell by cell strategy requires fewer refined elements than structured AMR [2,17,4], which selects rectangu-
lar groups of elements to be refined. A coarse element is refined by subdividing along the bisectors of the ele-
ment sides. In contrast to subdivision on fixed Cartesian meshes, where the refinement follows the spatial
coordinates, our refinement follows the element’s local coordinates n and g. The ALE formulation approxi-
mately aligns elements with the flow, by bisecting the element sides, the refinement will also align with the flow.
The subdivision occurs in one direction for anisotropic refinement, or in both directions for isotropic
refinement.
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The change in density Dq ¼ Dqnn̂þ Dqgĝ is used as the refinement criteria in this work as the flow is invis-
cid. The change in density in the element’s n direction is given by
Fig. 3.
refinem
jDqnj ¼MAX½jqr � qij; jqi � qlj�; ð28Þ
where qi is the coarse cell density, ql is the coarse density in the left neighbour cell and qr is the coarse density
in the right cell. A similar equation applies for the g direction.

If jDqj is greater than the refinement radius then a coarse element is refined. If jDqj becomes lower than the
derefinement radius then fine elements are derefined. The refinement and derefinement radii must differ other-
wise elements may alternate between refinement and derefinement over the time steps, this is referred to as
‘blinking’.

The ratio of the density differences jDqgj and jDqnj is used to decide whether anisotropic or isotropic refine-
ment is required [1]
jDqgj
jDqnj

< tanð30�Þ ) n-refinement;

tanð30�Þ <
jDqgj
jDqnj

< tanð60�Þ ) isotropic refinement;

jDqgj
jDqnj

> tanð60�Þ ) g-refinement:

ð29Þ
Isotropic to anisotropic derefinement may also occur
jDqgj
jDqnj

< tanð25�Þ ) derefine isotropic to n-refined;

jDqgj
jDqnj

> tanð65�Þ ) derefine isotropic to g-refined;

ð30Þ
where the derefinement angles 25� and 65� are used rather than 30� and 60� to prevent ‘blinking’.
In summary Dq can be considered as lying on an anisotropic refinement quadrant map [1] as illustrated in

Fig. 3. The magnitude of Dq dictates whether the element refines or derefines completely, the angle of Dq
30
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90

0

ref radius

deref
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iso ref
angle
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Refinement quadrant showing refinement radius, derefinement radius, refinement angle and derefinement angle (dotted line). The
ent regions are indicated as + for isotropic, j for n-refined and � for g-refined.
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dictates the type of refinement or derefinement. An element is never allowed to refine from one anisotropic
direction straight to the other anisotropic direction.

Whenever an anisotropic element is isotropically refined the anisotropic dynamic element values are inter-
polated rather than derefining them to coarse values first. For cell centred variables, the new values are the
piecewise constant values of the dynamic element being subdivided, i.e. ua1

or ua2
in Fig. 4 (for clarity we illus-

trate the steps of the method on orthogonal grids, in reality the grids will consist of distorted quadrilaterals).
For derefinement, the fine cell centred values are conservatively averaged to give the new coarse values. For

the isotropic to anisotropic coarsening shown in Fig. 4,
ua1
¼ u1X 1 þ u4X 4

X 1 þ X 4

;

ua2
¼ u2X 2 þ u3X 3

X 2 þ X 3

;

ð31Þ
where X represents either volume or mass.
New nodal values are linearly interpolated from the coarse nodal values. When an anisotropic element is

isotropically refined the positions and velocities from the anisotropic element are retained. Referring to
Fig. 5, showing the isotropic refinement of an g-refined element, the existing positions of nodes a1 and a2
are retained and these are not necessarily at the mid-points of the left and right coarse sides. The new node
in the middle, shown in Fig. 5, takes the position of the intercept between the retained anisotropic line and
the new perpendicular bisector,
xm ¼
ðxf 2 � xf 1Þðxa2ya1 � xa1ya2Þ � ðxa2 � xa1Þðxf 2yf 1 � xf 1yf 2Þ

ðxa2 � xa1Þðyf 2 � yf 1Þ � ðxf 2 � xf 1Þðya2 � ya1Þ
;

ym ¼
ðya2 � ya1Þðxf 1yf 2 � xf 2yf 1Þ � ðyf 2 � yf 1Þðxa1ya2 � xa2ya1Þ

ðxa2 � xa1Þðyf 2 � yf 1Þ � ðxf 2 � xf 1Þðya2 � ya1Þ
:

ð32Þ
The velocity for the middle node is given by interpolating between the existing anisotropic velocities by an
amount given by the ratio of the new middle node distance, lm, to the side’s full length L
Fig. 4. Diagram showing refinement of anisotropic elements and derefinement to anisotropic elements.

Fig. 5. Diagram showing the interpolation procedure for the middle velocity.
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um ¼ ua1 þ
lm

L
ðua2 � ua1Þ; ð33Þ
where
lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm � xa1Þ2 þ ðym � ya1Þ

2
q

;

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxa2 � xa1Þ2 þ ðya2 � ya1Þ

2
q

:

ð34Þ
The nodes a1 and a2, shown in Fig. 5, are those that already existed on the anisotropic line. When derefine-
ments take place the redundant nodal values are simply removed, while the positions and velocities of the
nodes still required for the anisotropic elements are unaltered.

During refinement and derefinement mass is conserved, however the linear interpolation of velocities during
refinement does not conserve momentum. A second order solution transfer method has been developed for
isotropic refinement that conserves both mass and momentum. The cell centred variables were refined using
conservative interpolation [2]. This approach was then generalised for nodal variables with a refinement ratio
of two [16]. However, the conservative second order method has not improved the solutions for the radial Sod
problem or Riemann problem significantly, and it requires a large increase in code complexity. Further work
on second order transfer and a generalisation for anisotropic refinement may be beneficial in the future.

For unsteady problems buffering is required to ensure that during a time step the shocks do not move out-
side of the fine regions, since this could cause oscillations. Buffering involves the refinement of unflagged ele-
ments that surround the refined regions [9]. To include buffering with our anisotropic method the following
steps are implemented (an element is referred to as primary if its directional density changes are above the
refinement thresholds for that type of element).

� If a buffer element is only surrounded by one type of refinement it becomes an element of that type.
� Any primary isotropic element has 8 isotropic cells around it. This may mean altering a primary anisotropic

element to isotropic or setting a buffer cell to isotropic even though it may also have anisotropic neigh-
bours, as shown in Fig. 6.
� If a buffer cell has both types of anisotropic neighbour, see Fig. 7, its type depends on where the change in

density lies on the anisotropic refinement quadrant map.
� If one type of primary anisotropic refinement is sandwiched between two elements of the other type of

primary anisotropic refinement then all three elements become isotropic, see Fig. 8.
Fig. 6. Buffering for a primary isotropic element can change an already anisotropic element.



Fig. 7. Type of buffer element B decided by change in density because it has two different anisotropic neighbours.

Fig. 8. Buffering to stop anisotropic elements being sandwiched.
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Buffering helps to reduce the possibility of isolated refinement regions; these have not been seen in our calcu-
lations to date. These steps also help to prevent isolated types of refinement, such as individual anisotropic
elements. Smoothing the refinement criteria, for example as done by Khokhlov [14], may be beneficial for
future work involving multi-material unsteady flows but at present this has not been implemented.



Fig. 9. Diagram of a course-to-fine interface. Empty circles indicate disjoint nodes.
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The new elements are inserted into the mesh forming a dynamic mesh that changes with time. The data
structure for the adaptive mesh technique involves separate connectivity arrays for each level similar to a hier-
archical data structure. The original coarse element–node, element–element, and node–node connectivity
arrays are retained. Additional dynamic connectivity arrays describing the dynamic mesh are introduced.
The different levels of connectivity arrays are linked using an array that records for each original coarse ele-
ment the new dynamic element number if the element remains coarse, the two new anisotropic element num-
bers, or the four new isotropic element numbers. Further arrays record the neighbouring nodes for disjoint
nodes, and the element connectivity at a disjoint node where a coarse element has two fine neighbours on a
side.

The solution is obtained on the dynamic mesh containing coarse, isotropic and anisotropic elements and
not separately on each level of refinement. This can be viewed as obtaining a solution on an unstructured
mesh, where an element may have more than four neighbouring elements due to the different levels of refine-
ment. This strategy should be significantly less expensive than solving on every level separately, while still
preserving the benefits of a hierarchical data structure.

The adaptive mesh technique requires minimal alterations to the Lagrangian step. Disjoint or hanging
nodes are introduced where the change in refinement requires nodes with only three neighbours, as illustrated
in Fig. 9. Each disjoint node is slaved to remain the same ratio, r, along the line joining the neighbouring non-
disjoint nodes on the interface,
xnD ¼ rxn2
þ ð1� rÞxn1

;

unD ¼ run2
þ ð1� rÞun1

;
ð35Þ
where r ¼ 1
2

in this work.
Disjoint nodes are treated as non-dynamic points that have no mass or momentum, so the mass (and force)

gathered at these points must be redistributed to the neighbouring dynamic points
Mn1
¼ Mn1

þ ð1� rÞMnD ;

Mn2
¼ Mn2

þ rMnD :
ð36Þ
Numerical results illustrating the accuracy of the disjoint nodes and highlighting the success of the adaptive
scheme with buffering are presented in Section 6.

Alterations to the Christensen artificial viscosity [5] are required to treat the unstructured nature of the
mesh. At a coarse-to-fine interface the correct neighbouring element edges must be identified and any missing
velocities are constructed by interpolation.

4. Anisotropic equipotential relaxation

In this section the equipotential mesh relaxation is generalised to make it compatible with anisotropic
refinement. In Anderson [2] the relaxation of the levels is carefully interwoven with the time refinement. When
the levels are at the same time the finest mesh is relaxed (using a fixed boundary condition at the resolution
transition), its new nodal positions are ‘‘injected’’ into the mesh one level coarser, the other nodes on this
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coarser level are now relaxed. In contrast our work does not include time refinement and considers mesh relax-
ation on the combined dynamic mesh by altering the mesh relaxation equations to take the differences in nodal
length spacings into account. This avoids the complexity of time refinement and is potentially cheaper since
the dynamic mesh is considered altogether, rather than considering individual levels using resolution transition
boundary conditions and ‘‘injection’’.

A mesh relaxation strategy that does not cause the areas of finer meshing to spread into the areas of coarser
meshing is required. All disjoint nodes are slaved (their nodal positions are interpolated from the non-disjoint
nodes) and do not require nodal stencils since the relaxation formulae are not applied to them.

The approach used is to take the nodal length spacings into account by giving each node a length value,
C/,w+1 etc., denoting if it is coarse or finely spaced from the centre node. Taylor Series expansions involving
these length values are then used to discretise the derivatives. The resulting relaxation equation weights depend
on the length values.

In the isotropic case only one length value is required to express the nodal spacing of a node from the centre
node in both directions. This will not be the case with anisotropic refinement as shown in Fig. 10. The (/ + 1,
w + 1) node, the (/ + 1, w � 1) node, the (/ � 1, w + 1) node and the (/ � 1, w � 1) node can have coarse or
fine nodal spacings from the centre node that are different in each direction. Separate C’s were set for the hor-
izontal and vertical spacings for the nodes at the corners of the 9 point stencil. The weights for the x-coordi-
nate relaxation were calculated using the horizontal Cx’s and the weights for the y-coordinate relaxation used
the vertical Cy’s.

The non-mixed second order derivatives o2x
o/2 ;

o2y
o/2 ;

o2x
ow2 and o2y

ow2 and the first order derivatives all involve three
nodes that lie on the same equipotential line, so that for the four nearest neighbour nodes only one C is
required. The Taylor Series expansion of x/+1,w is
x/þ1;w ¼ x/;w þ C/þ1;wl
ox
o/

� �
þ

C2
/þ1;wl2

2

o
2x

o/2

� �
þ

C3
/þ1;wl3

6

o
3x

o/3

� �
. . . ð37Þ
and the o2x
o/2 term becomes
o2x

o/2
¼ 2

l2ðC2
/�1;w þ C/�1;wC/þ1;wÞ

x/�1;w �
2

l2ðC/�1;wC/þ1;wÞ
x/;w þ

2

l2ðC2
/þ1;w þ C/�1;wC/þ1;wÞ

x/þ1;w: ð38Þ
For the mixed derivative, the weights for the x-coordinate must be derived using the following type of Taylor
Series expansion for the corner nodes
Fig. 10. Diagram showing the stencil for a node with coarse, isotropic and anisotropic neighbouring elements.
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x/þ1;wþ1 ¼ x/;w þ Cx/þ1;wþ1l
ox
o/

� �
þ Cx/þ1;wþ1h

ox
ow

� �
þ

Cx2
/þ1;wþ1l2

2

o2x

o/2

� �
þ Cx2

/þ1;wþ1lh
o2x

ow2

� �

þ
Cx2

/þ1;wþ1h2

2

o2x

ow2

� �
. . . : ð39Þ
Although only the Cx’s are required for the diagonal nodes, these must appear with both the / and w terms in
the Taylor Series expansion. Otherwise the balance of the diagonal nodes will be lost and the relaxation equa-
tion of a node with uniformly coarse nodal spacings in both directions will not reduce to the equipotential
relaxation equations.

Using the Taylor expansion to discretise the x-coordinate mixed derivative results in
o2x
o/w

¼ � Cx/þ1;w�1Cx/�1;wþ1 � Cx/þ1;wþ1Cx/�1;w�1

2lhCx/þ1;wþ1Cx/þ1;w�1Cx/�1;wþ1Cx/�1;w�1

x/;w þ
x/þ1;wþ1

2lhðCx/�1;w�1Cx/þ1;wþ1 þ Cx2
/þ1;wþ1Þ

� x/�1;wþ1

2lhðCx/�1;wþ1Cx/þ1;w�1 þ Cx2
/�1;wþ1Þ

� x/þ1;w�1

2lhðCx/�1;wþ1Cx/þ1;w�1 þ Cx2
/þ1;w�1Þ

þ x/�1;w�1

2lhðCx/�1;w�1Cx/þ1;wþ1 þ Cx2
/�1;w�1Þ

; ð40Þ
where the l’s and h’s will cancel out in the inverse equation.
The new a’s, b’s and c’s are related to the previous central difference values a/,w, b/,w and c/,w (Eqs. (14)–

(16)) by
a ¼ 4a/;w

ðC/;wþ1 þ C/;w�1Þ2
; ð41Þ

b ¼
4b/;w

ðC/þ1;w þ C/�1;wÞðC/;wþ1 þ C/;w�1Þ
; ð42Þ

c ¼
4c/;w

ðC/þ1;w þ C/�1;wÞ2
: ð43Þ
Substituting into the inverse equation results in the following formula for the new x nodal coordinate
x/;w ¼
a/;w

x/�1;w

C/�1;w
þ x/þ1;w

C/þ1;w

� �
DðC/;wþ1 þ C/;w�1Þ2ðC/�1;w þ C/þ1;wÞ

þ
c/;w

x/;w�1

C/;w�1
þ x/;wþ1

C/;wþ1

� �
DðC/þ1;w þ C/�1;wÞ2ðC/;w�1 þ C/;wþ1Þ

þ

b/;w

x/�1;wþ1
Cx/�1;wþ1

þ
x/þ1;w�1

Cx/þ1;w�1

� �
ðCx/�1;wþ1þCx/þ1;w�1Þ

�
x/þ1;wþ1

Cx/þ1;wþ1
þ

x/�1;w�1
Cx/�1;w�1

� �
ðCx/þ1;wþ1þCx/�1;w�1Þ

0
@

1
A

DðC/þ1;w þ C/�1;wÞðC/;wþ1 þ C/;w�1Þ
; ð44Þ
where D is given by
D ¼ a/;w

ðC/;wþ1 þ C/;w�1Þ2ðC/�1;wC/þ1;wÞ
þ

c/;w

ðC/þ1;w þ C/�1;wÞ2ðC/;w�1C/;wþ1Þ

þ
b/;wðCx/þ1;wþ1Cx/�1;w�1 � Cx/þ1;w�1Cx/�1;wþ1Þ

PðC/þ1;w þ C/�1;wÞðC/;wþ1 þ C/;w�1Þ
; ð45Þ
with
P ¼ Cx/þ1;wþ1Cx/þ1;w�1Cx/�1;wþ1Cx/�1;w�1: ð46Þ

The expression for the y-coordinate has the same form except that all of the Cx’s are replaced by Cy’s in both
the y/,w equation and the expression for D.

The method automatically reduces to the isotropic case if the Cx’s are equal to the Cy’s and reduces to the
original Winslow–Crowley relaxation equations if the nodal spacings are also all the same. The method is
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formally only first order when the stencil has mixed coarse and fine nodal spacings. However, the same
approach is applied to all nodes (except disjoint nodes) and the node’s nearest neighbours are always used
reducing the possibility that a node will be moved too far outside its neighbouring nodes.

The variables must now be updated to correspond to the new relaxed dynamic mesh. We now extend the
advection method so that it can be applied on the dynamic mesh.

5. Adaptive mesh advection

Since the adaptive meshes are unstructured the advection algorithms need to be generalised to include ele-
ments that have more than four neighbouring fluxes, see Fig. 11.

Consider an interface between a coarse element and two fine neighbours, if the fine neighbours are outflux-
ing then the required influx to the coarse element must be
Fig. 11
empty
Duc ¼ Duf 1 þ Duf 2: ð47Þ
If the coarse element outfluxes into the two fine elements, the influx for each fine element must be calculated. If
the variable is considered approximately constant over the coarse side (an approximation made in the original
advection flux interpolation) then the required fine fluxes are given by
Duf 1 ¼
DV f 1Duc

DV f 1 þ DV f 2

;

Duf 2 ¼
DV f 2Duc

DV f 1 þ DV f 2

:

ð48Þ
The slope calculation is complicated at coarse-to-fine interfaces because the variable positions are not in the
same place in coarse and fine elements. Furthermore, the width in the direction orthogonal to the slope will
have an unwanted affect because the slopes are calculated using volume coordinates and the three cells do not
line up.

A conservative average is used to give a variable position in line with the others. The volume that aligns
with the element whose slope is being calculated is used in the volume coordinates. For the case in Fig. 12,
the slope of a coarse element next to a fine, the value of the required variable for Eq. (18) is given by
uaþ1 ¼
ðuAV A þ uBV BÞ
ðV A þ V BÞ

; ð49Þ
and the partial volumes used for Dxa+1 in Eq. (20), when calculating the parabolic slope, are then
V aþ1;1 ¼ V A;1 þ V A;4;

V aþ1;4 ¼ V B;1 þ V B;4:
ð50Þ
For the case in Fig. 13 the value of the required variable for Eq. (18) is given by
ua�1 ¼ uC; ð51Þ
. Diagram of a course-to-fine interface to show overlap volumes. The elements are shown before and after mesh relaxation. The
circle indicates the disjoint node.



Fig. 12. Diagram of a coarse cell with coarse and fine neighbours to show slope variables. The empty circle indicates the interpolated
value.
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where for first order interpolation the value in the element is constant. The partial volumes used for Dxa in Eq.
(19) are then
Fig. 13
V a�1;2 þ V a�1;3 ¼ V C;2: ð52Þ

Once slopes and neighbouring fluxes have been obtained the new cell values can be calculated using Eqs. (17)
and (23).

The disjoint nodes are slaved (their velocities are interpolated from the non-disjoint nodes) and so we need
only consider the momentum advection of non-disjoint nodes. The nodal mass that would have been gathered
to the disjoint nodes must be redistributed to the neighbouring non-disjoint nodes, thus the dual mesh lines
pass straight through the disjoint nodes. The nodal mass weights are a quarter of the surrounding element’s
mass plus any other mass contributions passed to the node from other neighbouring nodes of that element
being disjoint. The total mass is then the sum of the weights for each node. This corresponds exactly to the
dual mesh shown in Fig. 14.

The nodal mass fluxes are easier to calculate if the contributions to them are calculated individually. From
Eq. (25), for side 2 of node n we have
dmn2 ¼ dmn2;2 þ dmn2;3; ð53Þ

where the second subscript denotes the quadrant the dual line is associated with, and we can calculate dmn2,2

and dmn2,3 separately.
A dual mesh line that passes straight through the disjoint node lies along one of the element mass fluxes but

is only half as long. Referring to Fig. 15, fa the contribution to the nodal mass flux is given by
fa ¼ dmn1;2 ¼
1

2
dme2;1: ð54Þ
The dual mesh line not passing through the disjoint node is similar to the usual dual mesh line except that it
cuts the whole of the element not just half, therefore the contribution to the nodal mass flux is
fb ¼ dmn2;2 ¼
1

2
ðdme2;2 þ dme2;4Þ: ð55Þ
. Diagram of a fine cell with coarse and fine neighbours to show slope variables. The empty circle indicates the interpolated value.



Fig. 14. Diagram of the chosen dual mesh. Dotted lines are the dual mesh, empty circles indicate disjoint nodes.

Fig. 15. Diagram of the chosen dual mesh around an interface showing the mass fluxes.
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In the case of a corner shown in Fig. 16, D1 and D2 represent diagonal fluxes to a diagonal neighbour dual cell
and are calculated as the usual contributions.

To be able to calculate the post advection nodal mass we require the influxes from the neighbours. There-
fore we must consider between which nodes fluxes are passed and the value of the neighbouring nodal mass
fluxes. When an element’s nodal mass flux contribution is split between two neighbouring nodes it is split
equally, half is passed to each.

The easiest and most efficient way of calculating the neighbour fluxes is in two parts, the first two terms are
from the usual direct neighbouring node on that side and then there are perturbations caused by the unstruc-
tured mesh adding neighbouring fluxes or reducing the flux as it passes to another neighbour. From Fig. 17 the



Fig. 16. Diagram of the chosen dual mesh around a corner showing the mass fluxes.
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neighbouring flux for side 2 of node n can be seen to be the sum of all the neighbouring fluxes for side 2
dmn24,1, dmn24,4, dmnb4,4, and dmnt4,1. This can be split into the direct neighbouring node contribution
and the perturbation, so that
Fig. 17
fnbn,2 w
fnbn;2 ¼ dmn24;1 þ dmn24;4 þ pert

pert ¼ dmnb4;4 þ dmnt4;1:
ð56Þ
For a corner, involving an isotropic element, diagonal fluxes must also be considered and their neighbouring
fluxes calculated.
. Diagram of the neighbour nodes, n’s, and the neighbour mass fluxes, f = dmn, for an interface. The arrow indicates the extent of
hich is the sum of ft4,1, f24,4, f24,1 and fb4,4.
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Finally the post advection nodal mass is calculated using
Fig.
Mþ
n ¼ M�

n þ
X4

i¼1

DMn;i þ
X4

i¼1

Ddiag1n;i þ
X4

i¼1

Ddiag2n;i; ð57Þ
where for node n for example
DMn;2 ¼ �dmn2 þ fnbn;2 ð58Þ
is the difference between the dual cell’s outflux on side 2, dmn2, and the neighbouring flux through side 2 into
the dual cell of node n, fnbn,2. Similar differences, Ddiag1n,i and Ddiag2n,i, are calculated for the diagonal fluxes.

Velocity slopes are required to calculate the new velocities. If the dual mesh is defined without disjoint node
dual cells then the fine node next to the disjoint node is missing an aligning dual cell. The approach taken in
calculating slopes for coarse nodes on coarse-to-fine interfaces is to calculate slopes on a dual mesh defined
using the coarse nodal stencil. Slopes for nodes in the fine area of meshing are then calculated using a different
dual mesh that includes volumes around disjoint nodes. Due to the use of volume coordinates the difference
between the widths perpendicular to the slope and the width of the node’s original dual cell must be taken into
account. It should be noted that the limiting here may not be strictly between the node and it’s flux neighbour
but this appears to suffice in all the test problems tried.

It is easier to calculate the contributions to the momentum fluxes separately, rather than for the whole flux-
ing side. The difference between the flux dual mesh and the slope dual mesh must be taken into account as a
ratio that corrects the width over which the slope was calculated. The velocity is interpolated out as far as the
flux dual mesh line. For the corner diagonal fluxes, the only interpolation required is in the direction perpen-
dicular to the flux side as the original scheme assumes the value is constant along the flux side.

For example the case of a corner, shown in Figs. 18 and 19 with Dun2,2 = k2 and Dun1,2 = k1, has contri-
butions to the momentum fluxes given by
Dun2;2 ¼ �dmn2;2 uþ ug
Wcn;3 þ Wcn;2

2
3
W n;2

 !
2

3
W n;2 �

1

2
dmn2;2

� � !
; ð59Þ

Dun1;2 ¼ �dmn1;2 u� un
Wcn;1 þ Wcn;2

2
3
W n;2

 !
2

3
W n;2 �

1

2
dmn1;2

� � !
; ð60Þ
where the Wcn,i are the nodal mass weights of node n used in the slope calculation and the Wn,i are the nodal
mass weights of node n used in the flux calculation.

The total diagonal momentum fluxes from Fig. 20 are
same
 width

slope
widthrequired

 width
k2

k1

D1

D2

K2

18. Calculation of momentum flux k2 for a corner, dotted boundary is the slope dual cell, line boundary is the flux dual cell.
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Fig. 19. Calculation of momentum flux k1 for a corner, dotted boundary is the slope dual cell, line boundary is the flux dual cell.

Fig. 20
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Dudiag1n;2 ¼ �D1 u� un
Wcn;1 þ Wcn;2

2
3
W n;2

 !
W n;2

3
�D1

2

� � !
; ð61Þ

Dudiag2n;2 ¼ �D2 uþ ug
Wcn;3 þ Wcn;2

2
3
W n;2

 !
W n;2

3
�D2

2

� � !
: ð62Þ
The calculation for neighbour momentum fluxes follows exactly the same procedure as for nodal mass fluxes.
Finally the new post advection velocity is found using the momentum fluxes, their neighbour momentum
fluxes, and the pre and post advection nodal masses.

This generalisation of the advection method conserves mass, internal energy and momentum at resolution
transitions in the dynamic mesh. The changes to the advection procedures are implemented by looping
through the disjoint nodes and are thus valid for anisotropic elements. It should be noted that anisotropic ele-
ments never cause the diagonal fluxes seen in the isotropic element corner case.

The anisotropic adaptive mesh ALE code has been validated on a range of test problems we now present
results for three of these test problems.
required
 widthslope

width

same width

k2

k1

D1

D2

. Calculation of diagonal momentum flux D1 for a corner, dotted boundary is the slope dual cell, line boundary is the flux dual cell.
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6. Results

6.1. Piston problem

A piston problem with a horizontal velocity of 1.0 on the left boundary and q = 1, p = 1 in a 0.4 · 0.1
domain was run to t = 0.15 to assess the effect of a shock crossing a static refinement interface. Calculations
were performed with a fine-to-coarse interface at x = 0.2 initially, a coarse-to-fine interface at x = 0.2, and a
horizontal interface at y = 0.04. The three types of refinement (isotropic, x-refinement and y-refinement) were
tested for each case. Convergence results were obtained and compared to convergence results for a uniformly
fine and a dynamic isotropic calculation with buffering.

The convergence of the dynamically adaptive scheme was comparable to that of the uniformly fine calcu-
lation, and the buffering ensures that the shock remains within the refined region. However, if the shock was
allowed to cross from a fine region to a coarse region, the convergence for the isotropic and x-refinement cases
was reduced to less than that of a uniformly coarse calculation, see Fig. 21. This was due to the spurious reflec-
tions and transmissions caused as the shock crosses the interface. The y-refinement calculation, that intro-
duced disjoint nodes but had no resolution transition in the x direction, retained the accuracy of the coarse
calculation.

In Fig. 22, results for a coarse-to-fine interface are presented, these show that for the x-refinement and iso-
tropic calculations (where the resolution in the x direction has increased) the accuracy is between that of the
uniformly fine and coarse calculations. The y-refinement has no resolution increase in the x direction, so the
coarse accuracy is retained. The coarse-to-fine interfaces cause much smaller spurious reflections and transmis-
sions than those seen with a fine-to-coarse interface.

Fig. 23 shows that the convergence results for the horizontal interface have comparable accuracy to the
uniformly coarse calculation for all three types of refinement. Running a shock along an interface causes dif-
ferences in the shock width and disturbances due to the impedance mismatch and the vorticity this generates.

In summary it is the change in resolution and not the disjoint nodes that lead to spurious reflections and
transmissions as shocks pass through interfaces. Allowing shocks to pass through or along interfaces should
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Fig. 21. Convergence of norm 1 with highest resolution for fine, adaptive isotropic, static isotropic, static anisotropic x-refinement and
static anisotropic y-refinement for fine-to-coarse piston problem.
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Fig. 22. Convergence of norm 1 with highest resolution for fine, adaptive isotropic, static isotropic, static anisotropic x-refinement and
static anisotropic y-refinement for coarse-to-fine piston problem.
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Fig. 23. Convergence of norm 1 with highest resolution for fine, adaptive isotropic, static isotropic, static anisotropic x-refinement and
static anisotropic y-refinement for horizontal interface piston problem.
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be avoided by employing adaptive refinement and including buffering; accuracy comparable to the uniformly
fine calculations can then be achieved. Reducing the spurious effects produced when shocks interact with
refinement interfaces remains a challenge for the future.
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6.2. Radial Sod problem

A quarter radial Sod problem [20] was run to t = 0.25. Within a 0.4 radius of (0, 0) the initial conditions
were q = 1, p = 1 and zero velocity, elsewhere the initial conditions were q = 0.125, p = 0.1 and zero velocity.
The refinement threshold was 0.04 and the derefinement value was 0.025. For the anisotropic calculation the
isotropic refinement angle was 30� and the derefinement angle was 25� from each axis. The problem was run
with anisotropic and isotropic refinement on a 50 · 50 initial mesh, only isotropic refinement on a 50 · 50
mesh, a uniform 100 · 100 fine mesh, and a uniform 50 · 50 coarse mesh. The adaptive calculations were
run with only one level of mesh refinement as the data structures used have yet to be generalised from two
Fig. 24. Uniformly fine mesh for Radial Sod problem t = 0.25.
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Fig. 25. Anisotropic mesh for Radial Sod problem t = 0.25.
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levels to many refinement levels. However, the anisotropic refinement and ALE methods presented in this
paper would generalise to many refinement levels as long as the refined elements of each level are properly
nested. This is a coding issue and generalisation of the data structures and code to many levels, together with
an investigation of the results, is an area for future work.

Refined regions occurred around the rarefaction fan, contact and shock, with derefinement in between these
features. In the anisotropic calculation, see Fig. 25, isotropic refinement only occurred within 15–20 degrees of
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Fig. 26. Fine mesh density contours for Radial Sod problem t = 0.25.
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Fig. 27. Anisotropic refinement density contours for Radial Sod problem t = 0.25.
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Fig. 28. Radial Sod problem density, pressure, radial velocity and specific internal energy for anisotropic solution at t = 0.25.
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the diagonal, where the gradient would be expected to vary in both directions. The meshes in Figs. 24 and 25
are smooth and untangled. This problem benefits greatly from the mesh relaxation as the mesh becomes highly
distorted if the problem is run as purely Lagrangian. The density contours are very similar for the anisotropic
calculation, see Fig. 27, and the fine calculation, see Fig. 26, with only small differences occurring at the edges
of the rarefaction fan and contact. The loss in radial symmetry and noise experienced between the rarefaction
fan and contact is due to the implementation of the initial conditions on the quadrilateral mesh forming a
stepped radius rather than a perfect quarter circle.

A very fine one-dimensional approximate solution, with 5000 points, can be obtained using a Roe approx-
imate Riemann solver, with the radial terms included as a source term as explained in [24]. This fine approx-
imation is compared against the adaptive mesh ALE results in Fig. 28 and is used to obtain a measure of the
error. The 1-norm error for a calculation with N elements of volume Vi is
Table
Errors

Calcul

Fine
Isotrop
Anisot
Coarse
kek1 ¼
XN

i¼1

½jqamr � qsjV i�; ð63Þ
whilst the 2-norm error is
kek2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

½ðqamr � qsÞ
2V i�

vuut : ð64Þ
1
for fine, isotropic, anisotropic and coarse Radial Sod calculations t = 0.25

ation iei1 iei2

0.0044 0.0105
ic 0.0046 0.0109

ropic 0.0046 0.0107
0.0072 0.0139
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Table 1 shows that the anisotropic calculation has comparable errors to the isotropic calculation. The aniso-
tropic calculation runs 7.8 times faster than the uniformly fine calculation, where the isotropic calculation only
runs 6.6 times faster. Both the isotropic and anisotropic calculation errors are nearly as good as the fine cal-
culation error, and are much better than the coarse error. Fig. 29 compares the convergence of the 1 norm
error in the anisotropic calculations (plotted at the highest resolution) and the uniformly fine calculations.
The anisotropic results converge only slightly slower than the uniformly fine results, confirming that the
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Fig. 29. Convergence of norm 1 with highest (finest) resolution for fine and anisotropic Radial Sod calculations.
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Fig. 30. Number of elements over time for Radial Sod problem.



anisotropic method’s convergence is of a comparable order to that of uniform meshing, and is dictated by the
finer resolution and not the coarse resolution.

The anisotropic calculation requires fewer elements every time step, see Fig. 30. The types of refinement
occurring over the calculation time are plotted in Fig. 31 and this shows that the majority of the elements
remain coarse. Even in this problem, which contains a shock that curves rather than aligns with the mesh,
the amount of anisotropic refinement outweighs the number of isotropic refinements.
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6.3. Two-dimensional Riemann problem

In this example different constant initial conditions are given in each quarter of a square domain. The quar-
ters 1,2,3 and 4 are defined respectively as x > 0.5 and y > 0.5, x < 0.5 and y > 0.5, x < 0.5 and y < 0.5 and
finally x > 0.5 and y < 0.5. The initial conditions for the 4 shock configuration given in Kurganov and Tadmor
[15] are
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Fig. 33. Anisotropic mesh for 2D Riemann problem t = 0.2.
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Fig. 34. Uniformly fine calculation density contours for 2D Riemann problem t = 0.2.
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p2 ¼ 0:3500 q2 ¼ 0:5065 p1 ¼ 1:1000 q1 ¼ 1:1000

u2 ¼ 0:8939 v2 ¼ 0:0000 u1 ¼ 0:0000 v1 ¼ 0:0000

p3 ¼ 1:1000 q3 ¼ 1:1000 p4 ¼ 0:3500 q4 ¼ 0:5065

u3 ¼ 0:8939 v3 ¼ 0:8939 u4 ¼ 0:0000 v4 ¼ 0:8939:
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Fig. 35. Anisotropic calculation density contours for 2D Riemann problem t = 0.2.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

t

nu
m

be
r 

el
em

en
ts

isotropic
anisotropic
fine

Fig. 36. Number of elements over time for 2D Riemann problem.
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Fig. 37. Number of each type of element over time for 2D Riemann problem.
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The refinement threshold was 0.15 and the derefinement value was 0.13. For the anisotropic calculation the
isotropic refinement angle was 30� and the derefinement angle was 25� from each axis. The problem was
run with anisotropic and isotropic refinement on a 50 · 50 initial mesh.

The anisotropic method performs very well on this problem, as illustrated by comparing Fig. 32 with
Fig. 33. The majority of the refinement is anisotropic. Isotropic refinement only occurs where the shocks inter-
sect and where the circumference of the oval does not align with the direction of the mesh. Within the high
density oval cells have derefined completely. The density contours, see Fig. 35, are comparable with those
achieved from a uniformly fine calculation, see Fig. 34.

Fig. 36 shows that the anisotropic calculation requires significantly less elements per time step. The majority
of the refinement was anisotropic, see Fig. 37. The number of isotropic refinements increased slightly as the
oval became larger. This problem highlights the significant reduction in calculation time that can be achieved
with anisotropic refinement, the isotropic calculation runs 5.5 times faster than the uniformly fine calculation,
while the anisotropic calculation runs 8.6 times faster.
7. Conclusions

This paper has highlighted the feasibility and practicality of combining a cell by cell anisotropic adaptive
mesh technique with an ALE code. The Lagrangian, equipotential mesh relaxation and advection steps have
been generalised to be applied on the dynamic mesh containing coarse and fine elements. Excellent results
were achieved in an eighth of the original time for a radial Sod problem and a two-dimensional Riemann
problem. Proposed future work includes the generalisation of the data structure and code to many refine-
ment levels.
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